PART 7:半角公式(04:12)
利用倍角公式,將 \(\theta \) 改為 \(\frac{\theta }{2}\) 即可導出半角公式 \(\cos \theta = 2{\cos ^2}\frac{\theta }{2} - 1\) \( \Rightarrow \cos \frac{\theta }{2} = \pm \sqrt {\frac{{1 + \cos \theta }}{2}} \) \(\cos \theta = 1 - 2{\sin ^2}\frac{\theta }{2}\) \( \Rightarrow \cos \frac{\theta }{2} = \pm \sqrt {\frac{{1 + \cos \theta }}{2}} \) 依據 \(\frac{\theta }{2}\) 落在第幾象限來判斷正負