 
PART 6:三倍角公式
利用複角公式與倍角公式可導出三倍角公式
(1) \(\sin 3\theta = 3\sin \theta - 4{\sin ^3}\theta \)
證明
\(\sin 3\theta = \sin (\theta + 2\theta ) \)
\( = \sin \theta \cos 2\theta + \cos \theta \sin 2\theta \)
\( = \sin \theta (1 - 2{\sin ^2}\theta ) + 2\sin \theta {\cos ^2}\theta \)
\( = \sin \theta (1 - 2{\sin ^2}\theta ) + 2\sin \theta (1 - {\sin ^2}\theta )\)
\( = \sin \theta - 2{\sin ^3}\theta + 2\sin \theta - 2{\sin ^3}\theta \)
\( = 3\sin \theta - 4{\sin ^3}\theta \)
(2) \(\cos 3\theta = 4{\cos ^3}\theta - 3\cos \theta \)
證明方法完全相同
三倍角對正五邊形之作圖有非常大的幫助,過程中求 \(\sin {36^ \circ }\) 之值,
同學可參考延伸閱讀 正五邊形的作圖
|