課程單元 課程簡介 教學大綱 製作團隊 關鍵詞彙 意見反映
首頁 > > > >

 

PART 10:反餘弦函數的微分

定理10

 \(f(x) = {\rm{Co}}{{\rm{s}}^{ - 1}}x,\) ,則 \(f'(x) = \frac{{ - 1}}{{\sqrt {1 - {x^2}} }},\quad x \in ( - 1\;,\;1)\)

證明

\({\rm{cos(Co}}{{\rm{s}}^{ - 1}}x) = x\) ,微分 \( - \sin {\rm{(Co}}{{\rm{s}}^{ - 1}}x) \cdot {\rm{(Co}}{{\rm{s}}^{ - 1}}x)' = 1\)

\({\rm{(Co}}{{\rm{s}}^{ - 1}}x)' = \frac{1}{{ - \sin {\rm{(Co}}{{\rm{s}}^{ - 1}}x)}}\)

\({\rm{Co}}{{\rm{s}}^{ - 1}}x = \theta \) , \({\rm{Cos}}\theta  = x\) , \(\sin \theta  = \sqrt {1 - {x^2}} \)

\({\rm{(Co}}{{\rm{s}}^{ - 1}}x)' = \frac{{ - 1}}{{\sqrt {1 - {x^2}} }}\)


創用 CC 授權條款
微積分一 calculus ICUSTCourses 李柏堅製作,以創用CC 姓名標示-非商業性-禁止改作 3.0 台灣 授權條款釋出