 
PART 17:雙曲函數的基本數性質
雙曲函數與三角函數有許多類似的地方,下表內容可以依照定義容易證明,
為何要取名雙曲函數呢?因為以三角函數為例,
考慮參數式 \(x = \cos t\;,\;\;y = \sin t\) 在平面形成一個圓,
而參數式 \(x = \cosh t\;,\;\;y = \sinh t\) 在平面形成雙曲線。
圖3. \((x\;,\;y) = \) \((\cos t\;,\;\sin t)\)圖 |
圖4. \((x\;,\;y) = \) \((\cosh t\;,\;\sinh t)\)圖 |
\(x = \cos t\;,\;\;\;\;y = \sin t \Rightarrow {x^2} + {y^2} = 1\)
\(x = \cosh t\;,\;\;y = \sinh t \Rightarrow {x^2} - {y^2} = 1\)
下表是雙曲函數與三角函數的比較,是不是非常類似?
雙曲函數 |
三角函數 |
\({\cosh ^2}x - {\sinh ^2}x = 1\) |
\({\cos ^2}x + {\sin ^2}x = 1\) |
\(\sinh ( - x) = - \sinh x\) |
\(\sin ( - x) = - \sin x\) |
\(\cosh ( - x) = \cosh x\) |
\(\cos ( - x) = \cos x\) |
\(\tanh ( - x) = - \tanh x\) |
\(\tan ( - x) = - \tan x\) |
\(\sinh (\alpha + \beta ) = \sinh \alpha \cosh \beta + \cosh \alpha \sinh \beta \) |
\(\sin (\alpha + \beta ) = \sin \alpha \cos \beta + \cos \alpha \sin \beta \) |
\(\cosh (\alpha + \beta ) = \cosh \alpha \cosh \beta + \sinh \alpha \sinh \beta \) |
\(\cosh (\alpha + \beta ) = \cos \alpha \cos \beta - \sin \alpha \sin \beta \) |
|