課程單元 | 課程簡介 | 教學大綱 | 製作團隊 | 關鍵詞彙 | 意見反映 | ![]() |
![]() |
PART 19:例題-三角代換(求不定積分) \(\int {\sqrt {16 - {x^2}} dx} \) SOL: (1) 變數假設就緒 令 \(x = 4\sin \theta \) , \(dx = 4\cos \theta d\theta \) (2)將 \(x\) 改為 \(\theta \) \(\int {\sqrt {16 - {x^2}} dx} \) \( = \int {\sqrt {16 - {4^2}{{\sin }^2}\theta } 4\cos \theta d\theta } \) \( = 4\int {\cos \theta 4\cos \theta d\theta } \) \( = 16\int {{{\cos }^2}\theta d\theta } \) (3)平方化倍角 \(16\int {{{\cos }^2}\theta d\theta } \) \( = \frac{{16}}{2}\int {(1 + \cos 2\theta )d\theta } \) \( = 8(\theta + \frac{1}{2}\sin 2\theta ) + C\) \( = 8\theta + 4\sin 2\theta + C\) (4) 將 \(\theta \) 還原為 \(x\) ,其中還使用了倍角公式 \(\sin 2\theta = 2\sin \theta \cos \theta \) \(8\theta + 4\sin 2\theta + C\) \( = 8{\sin ^{ - 1}}\left( {\frac{x}{4}} \right) + 8\sin \theta \cos \theta + C\) \(= 8{\sin ^{ - 1}}\left( {\frac{x}{4}} \right) + 8\left( {\frac{x}{4}} \right)\left( {\frac{{\sqrt {16 - {x^2}} }}{4}} \right) + C\) \( = 8{\sin ^{ - 1}}\left( {\frac{x}{4}} \right) + \frac{{x\sqrt {16 - {x^2}} }}{2} + C\) 註: \(x = 4\sin \theta \) \( \Rightarrow \sin \theta = \frac{x}{4}\) \( \Rightarrow \theta = {\sin ^{ - 1}}\left( {\frac{x}{4}} \right)\) , \( \cos \theta = \frac{{\sqrt {16 - {x^2}} }}{4}\)
|
![]() 微積分一 calculus I 由CUSTCourses 李柏堅製作,以創用CC 姓名標示-非商業性-禁止改作 3.0 台灣 授權條款釋出 |