課程單元 | 課程簡介 | 教學大綱 | 製作團隊 | 關鍵詞彙 | 意見反映 | ![]() |
![]() |
PART 17:例題-避重就輕選擇 求不定積分 \(\int {{x^2}\sqrt {x + 3} \;dx} \) 我們希望根號內愈簡單愈好,所以令 \(u = x + 3\;\;\) \( \Rightarrow \;\;x = u - 3\;\;\) \(\; \Rightarrow \;\;dx = du\) SOL: 原式=\(\int {{x^2}\sqrt {x + 3} \;dx} \) \( = \int {{{(u - 3)}^2}\sqrt u \;du} \) \( = \int {({u^2} - 6u + 9){u^{1/2}}\;du} \) \( = \int {({u^{5/2}} - 6{u^{3/2}} + 9{u^{1/2}})\;du} \) \( = \frac{2}{7}{u^{7/2}} - 6 \cdot \frac{2}{5}{u^{5/2}} + 9 \cdot \frac{2}{3}{u^{3/2}} + C\) \( = \frac{2}{7}{(x + 3)^{7/2}} - \frac{{12}}{5}{(x + 3)^{5/2}} + 6{(x + 3)^{3/2}} + C\) |
![]() 微積分一 calculus I 由CUSTCourses 李柏堅製作,以創用CC 姓名標示-非商業性-禁止改作 3.0 台灣 授權條款釋出 |