課程單元 | 課程簡介 | 教學大綱 | 製作團隊 | 關鍵詞彙 | 意見反映 | ![]() |
![]() |
補充教材
\(\frac{1}{{{1^2}}} + \frac{1}{{{2^2}}} + \frac{1}{{{3^2}}} + \frac{1}{{{4^2}}} + \frac{1}{{{5^2}}} + \cdots = \frac{{{\pi ^2}}}{6}\) 上面算式稱為 \(n = 2\) 之 P 級數,為收斂函數,但這個結果令人吃驚, 無窮個有理數之總和竟成為無理數,在此以簡單計算(一般都以傅立葉級數展開式證明) 我們知道 \(y = \cos x\) 之馬克勞林級數展開式為 \(\cos x = 1 - \frac{{{x^2}}}{{2!}} + \frac{{{x^4}}}{{4!}} - \frac{{{x^6}}}{{6!}} + \cdots \cdots \) 現在考慮一個多項式 \(P(x) = {a_0} + {a_1}x + {a_2}{x^2} + {a_3}{x^3} + \cdots \cdots + {a_n}{x^n}\) ,若有 \(n\) 個根 為\({\beta _1},{\beta _2},{\beta _3},{\beta _4}, \cdots \cdots ,{\beta _n}\),則 \(P(x) = ({\beta _1} - x)({\beta _2} - x)({\beta _3} - x) \cdots \cdots ({\beta _n} - x)\) 依照根與係數之關係, \({a_0} = {\beta _1} \cdot {\beta _2} \cdot {\beta _3} \cdot {\beta _4} \cdot \cdots \cdots \cdot {\beta _n}\) \( - {a_1} = {\beta _2} \cdot {\beta _3} \cdot {\beta _4} \cdot \cdots {\beta _n} + {\beta _1} \cdot {\beta _3} \cdot {\beta _4} \cdot \cdots {\beta _n} + {\beta _1} \cdot {\beta _2} \cdot {\beta _4} \cdot \cdots {\beta _n} + \cdots \cdots + {\beta _1} \cdot {\beta _2} \cdot {\beta _3} \cdot \cdots {\beta _{n - 1}}\) 相除得到所有根倒數之和 的根有無限個,為 \( \pm \frac{\pi }{2}, \pm \frac{{3\pi }}{2}, \pm \frac{{5\pi }}{2}, \pm \frac{{7\pi }}{2}, \cdots \cdots \),那麼 \(\cos \sqrt x = 0\) 的根也是無限個,為 \(\frac{{{\pi ^2}}}{4},\frac{{9{\pi ^2}}}{4},\frac{{25{\pi ^2}}}{4},\frac{{49{\pi ^2}}}{4}, \cdots \cdots \),馬克勞林級數展開 \(\cos \sqrt x = 1 - \frac{x}{{2!}} + \frac{{{x^2}}}{{4!}} - \frac{{{x^3}}}{{6!}} + \cdots \cdots \)之\({a_0} = 1\),\({a_1} = - \frac{1}{2}\),代入\((*)\) \(\frac{1}{2} = \frac{4}{{{\pi ^2}}} + \frac{4}{{{3^3}{\pi ^2}}} + \frac{4}{{{5^2}{\pi ^2}}} + \frac{4}{{{7^2}{\pi ^2}}} + \cdots \cdots \cdots \cdots \quad \quad \quad \) \(\frac{{{\pi ^2}}}{8} = \frac{1}{{{1^2}}} + \frac{1}{{{3^3}}} + \frac{1}{{{5^2}}} + \frac{1}{{{7^2}}} + \cdots \cdots \cdots \cdots \quad \quad \quad \) 假設 \(K = \frac{1}{{{1^2}}} + \left( {\frac{1}{{{2^2}}}} \right) + \frac{1}{{{3^3}}} + \left( {\frac{1}{{{4^2}}}} \right) + \frac{1}{{{5^2}}} + \left( {\frac{1}{{{6^2}}}} \right) + \frac{1}{{{7^2}}} + \cdots \cdots \cdots \cdots \quad \quad \quad \) \( \Rightarrow K = \frac{{{\pi ^2}}}{8} + \frac{1}{4}\left( {\frac{1}{{{1^2}}}} \right) + \left( {\frac{1}{{{2^2}}}} \right) + \left( {\frac{1}{{{3^2}}}} \right) + \cdots \cdots \cdots \cdots = \frac{{{\pi ^2}}}{8} + \left( {\frac{1}{{{2^2}}}} \right) + \left( {\frac{1}{{{4^2}}}} \right) + \left( {\frac{1}{{{6^2}}}} \right) + \cdots \cdots \cdots \cdots \) \(\Rightarrow K = \frac{{{\pi ^2}}}{8} + \frac{1}{4}K \Rightarrow \frac{3}{4}K = \frac{{{\pi ^2}}}{8} \Rightarrow K = \frac{{{\pi ^2}}}{6}\) |
![]() 微積分一 calculus I 由CUSTCourses 李柏堅製作,以創用CC 姓名標示-非商業性-禁止改作 3.0 台灣 授權條款釋出 |