課程單元 | 課程簡介 | 教學大綱 | 製作團隊 | 關鍵詞彙 | 意見反映 | ![]() |
![]() |
詳解:\(f(x)\) 在 \(x = 0\) 之馬克勞林級數展開式 \(f(x) \buildrel\textstyle.\over= f(0) + \frac{{f'(0)}}{{1!}}x + \frac{{f''(0)}}{{2!}}{x^2} + \frac{{f'''(0)}}{{3!}}{x^3} + \frac{{{f^{(4)}}(0)}}{{4!}}{x^4} + \cdots \) \(f(x) = \ln (x + 1)\) \( \Rightarrow f(0) = \ln (1) = 0\) \(f'(x) = \frac{1}{{x + 1}}\) \( \Rightarrow f'(0) = \frac{1}{1} = 1\) \(f''(x) = - \frac{1}{{{{\left( {x + 1} \right)}^2}}}\) \( \Rightarrow f''(0) = - \frac{1}{1} = - 1\) \(f'''(x) = \frac{2}{{{{\left( {x + 1} \right)}^3}}}\) \( \Rightarrow f'''(0) = \frac{2}{1} = 2\) \({f^{(4)}}(x) = \frac{{ - 3!}}{{{{\left( {x + 1} \right)}^4}}}\) \( \Rightarrow {f^{(4)}}(0) = \frac{{ - 3!}}{1} = - 3!\) \(\ln \left( {x + 1} \right) \buildrel\textstyle.\over= \frac{1}{{1!}}x + \frac{{ - 1}}{{2!}}{x^2} + \frac{2}{{3!}}{x^3} + \frac{{ - 3!}}{{4!}}{x^4} + \cdots \) \(\ln \left( {x + 1} \right) \buildrel\textstyle.\over= x - \frac{1}{2}{x^2} + \frac{1}{3}{x^3} - \frac{1}{4}{x^4} + \cdots \) |
![]() 微積分一 calculus I 由CUSTCourses 李柏堅製作,以創用CC 姓名標示-非商業性-禁止改作 3.0 台灣 授權條款釋出 |