 
設90°< \(\theta \) <180°,且 \(\tan \frac{\theta }{2}2\) ,下列各式中何者最大?
(A) \(\sin \frac{\theta }{2}\) (B) \(\sin \theta \) (C) \(\sin 2\theta \) (D) \(\sin 3\theta \) |
詳解:\(\theta \) 為第三象限角,如圖
故 \(\sin \frac{\theta }{2} = \frac{{ - 2}}{{\sqrt 5 }}\) , \(\cos \frac{\theta }{2} = \frac{{ - 1}}{{\sqrt 5 }}\)
(A) \(\sin \frac{\theta }{2} = \frac{{ - 2}}{{\sqrt 5 }}\)
(B) \(\sin \theta = 2\sin \frac{\theta }{2}\cos \frac{\theta }{2} = 2 \cdot \frac{{ - 1}}{{\sqrt 5 }} \cdot \frac{{ - 2}}{{\sqrt 5 }} = \frac{4}{5}\)
(C) \(\because \) \(\cos \theta = \cos 2\frac{\theta }{2} = 1 - 2{\sin ^2}\frac{\theta }{2} = 1 - 2 \cdot \frac{4}{5} = - \frac{3}{5}\)
\(\therefore \) \(\sin 2\theta = 2\sin \theta \cos \theta = 2\left( {\frac{4}{5}} \right)\left( { - \frac{3}{5}} \right) = \frac{{ - 24}}{{25}}\)
(D) \(\sin 3\theta = 3\sin \theta - 4{\sin ^3}\theta = 3\left( {\frac{4}{5}} \right) - 4{\left( {\frac{4}{5}} \right)^3} = \frac{{44}}{{125}}\)
故選(B)
|