 
PART 1:複角公式(04:14)
兩個角度加減後的三角函數值可以透過複角公式求值
\(\sin (\alpha + \beta ) = \sin \alpha \cos \beta + \cos \alpha \sin \beta \)
\(\sin (\alpha - \beta ) = \sin \alpha \cos \beta - \cos \alpha \sin \beta \)
\(\cos (\alpha + \beta ) = \cos \alpha \cos \beta - \sin \alpha \sin \beta \)
\(\cos (\alpha - \beta ) = \cos \alpha \cos \beta + \sin \alpha \sin \beta \)
\(\tan (\alpha + \beta )\) 可以使用三角函數恆等式 \(\tan (\alpha + \beta ) = \frac{{\sin (\alpha + \beta )}}{{\cos (\alpha + \beta )}}\)
\(\tan (\alpha + \beta ) = \frac{{\tan \alpha + \tan \beta }}{{1 - \tan \alpha \tan \beta }}\) , \(\tan (\alpha - \beta ) = \frac{{\tan \alpha - \tan \beta }}{{1 + \tan \alpha \tan \beta }}\)
複角公式可以導出倍角、半角公式,故應該熟記
|