課程單元 課程簡介 教學大綱 製作團隊 關鍵詞彙 意見反映
首頁 > > > >

 

Let  \(f\left( x \right) = {e^{ - {x^2}}}\)
1. Find the horizontal asymptote of the graph of \(f\)
2. Find the inflection point of\(f\)
3. Sketch the graph of\(f\)
【師範大學102年度轉學考】

詳解:\(\lim \limits_{x \to \infty } f\left( x \right) = \lim \limits_{x \to \infty } {e^{ - {x^2}}} = 0\)表示有一條水平漸近線\(y = 0\)

\(f\left( x \right) = {e^{ - {x^2}}} \Rightarrow f'\left( x \right) = ( - 2x){e^{ - {x^2}}} \Rightarrow f''\left( x \right) = ( - 2){e^{ - {x^2}}} + (4{x^2}){e^{ - {x^2}}} = (4{x^2} - 2){e^{ - {x^2}}}\)

二階臨界值\(x = \frac{1}{{\sqrt 2 }}\),\( x = \frac{{ - 1}}{{\sqrt 2 }}\)

\(x\)   \(-\frac{1}{\sqrt 2 }\)   \(\frac{1}{\sqrt 2 }\)

\(f''(x)\) + \(\vdots \) - \(\vdots \) +

\(f(x)\) \(\cup\) \(\vdots \) \(\cap\) \(\vdots \) \(\cup\)

有兩個反曲點\((\frac{1}{{\sqrt 2 }} ,  \frac{1}{{\sqrt e }})\),\(( - \frac{1}{{\sqrt 2 }} ,  \frac{1}{{\sqrt e }})\)

概圖


創用 CC 授權條款
微積分一 calculus ICUSTCourses 李柏堅製作,以創用CC 姓名標示-非商業性-禁止改作 3.0 台灣 授權條款釋出