 
PART 11:基本微分公式(證明)
1.加減法法則 \({\left( {f(x) \pm g(x)} \right)^\prime } = f'(x) \pm g'(x)\)
證明:在此只證明加法部分,減法狀況相同。
依據導函數定義\({\left( {f(x) + g(x)} \right)^\prime }\)
\(= \lim\limits_{\Delta x \to 0} \frac{{\left[ {f(x + \Delta x) + g(x + \Delta x)} \right] - \left[ {f(x) + g(x)} \right]}}{{\Delta x}}\)
\( = \lim\limits_{\Delta x \to 0} \frac{{\left[ {f(x + \Delta x) - f(x)} \right] + \left[ {g(x + \Delta x) - g(x)} \right]}}{{\Delta x}}\)
\(= \lim\limits_{\Delta x \to 0} \frac{{f(x + \Delta x) - f(x)}}{{\Delta x}} + \lim\limits_{\Delta x \to 0} \frac{{g(x + \Delta x) - g(x)}}{{\Delta x}}\)
\(= f'(x) + g'(x)\)
此法則說明了兩個函數加減後再微分 = 各自微分後再加減
2. 常數乘函數法則 \({\left( {k \cdot f(x)} \right)^\prime } = k \cdot f'(x)\)
證明:\({\left( {k \cdot f(x)} \right)^\prime }\) \( = \lim\limits_{\Delta x \to 0} \frac{{kf(x + \Delta x) - kf(x)}}{{\Delta x}}\)
\( = k\lim\limits_{\Delta x \to 0} \frac{{f(x + \Delta x) - f(x)}}{{\Delta x}}\)
\( = k \cdot f'(x)\)
此法則說明了常數在微分運算中可以自由進出
|