課程單元 | 課程簡介 | 教學大綱 | 製作團隊 | 關鍵詞彙 | 意見反映 | ![]() |
![]() |
PART 8:例題-連續函數的判斷(04:00) 設 \(f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{\frac{{x - 2}}{{\sqrt {x + 2} - 2}}}&{}\\k&{}\end{array}} \right.\) \(\begin{array}{l}\left( {x \ne 2} \right)\\\left( {x = 2} \right)\end{array}\) 在 \(x = 2\) 連續,試求 \(k\) 值 ? SOL: \(\lim\limits_{x \to 2} \frac{{x - 2}}{{\sqrt {x + 2} - 2}}\)= \(\lim\limits_{x \to 2} \frac{{(x - 2)(\sqrt {x + 2} + 2)}}{{(\sqrt {x + 2} - 2)(\sqrt {x + 2} + 2)}}\)= \(\mathop {\lim }\limits_{x \to 2} \frac{{(x - 2)(\sqrt {x + 2} + 2)}}{{x + 2 - 4}}\)
\(\lim\limits_{x \to 2} \frac{{(x - 2)(\sqrt {x + 2} + 2)}}{{x - 2}}\) \(\lim\limits_{x \to 2} \sqrt {x + 2} + 2\) \( = 4\) |
![]() 微積分一 calculus I 由CUSTCourses 李柏堅製作,以創用CC 姓名標示-非商業性-禁止改作 3.0 台灣 授權條款釋出 |