課程單元 課程簡介 教學大綱 製作團隊 關鍵詞彙 意見反映
首頁 > > > >

 

PART 4:極限的相關定理 (基礎)

設 \(f(x)\) 與 \(g(x)\) 均在 \(x = a\) 處之極限存在, \(k\) 為常數,則

1. \(\lim\limits_{x \to a} k = k\)

2. \(\lim\limits_{x \to a} x = a\)

3. \(\lim\limits_{x \to a} k{\kern 1pt} f(x) = \mathop {k\lim }\limits_{x \to a} f(x)\)

4. \(\lim\limits_{x \to a} {\kern 1pt} \left[ {f(x) \pm g(x)} \right] = \lim\limits_{x \to a} f(x) + \lim\limits_{x \to a} g(x)\)

5. \(\lim\limits_{x \to a} {\kern 1pt} \left[ {f(x) \cdot g(x)} \right] = \lim\limits_{x \to a} f(x) \cdot \lim\limits_{x \to a} g(x)\)

6. \(\lim\limits_{x \to a} {\kern 1pt} \left[ {\frac{{f(x)}}{{g(x)}}} \right] = \frac{{\lim \limits_{x \to a} f(x)}}{{\lim\limits_{x \to a} g(x)}}\) \(\left( {\lim\limits_{x \to a} g(x) \ne 0} \right)\)

 

 

 


創用 CC 授權條款
微積分一 calculus ICUSTCourses 李柏堅製作,以創用CC 姓名標示-非商業性-禁止改作 3.0 台灣 授權條款釋出