PART 15:餘弦定律-例題 於 \(\vartriangle ABC\) ,若 \(\overline {BC} = 4\sqrt 2 \) , \(\overline {CA} = 5\) , 則 \(\cos A = ?\) \(\sin A = ?\) \(\vartriangle ABC\) 之外接圓半徑 \(R\) 為? SOL: \(\cos A = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}}\) \( = \frac{{{5^2} + {7^2} - {{\left( {4\sqrt 2 } \right)}^2}}}{{2 \cdot 5 \cdot 7}}\) \( = \frac{{25 + 49 - 32}}{{70}} = \frac{3}{5}\) , 三角恆等式 \({\sin ^2}A + {\cos ^2}A = 1\) , \({\sin ^2}A = \frac{{16}}{{25}}\) \( \Rightarrow \sin A = \pm \frac{4}{5}\) (取正) \(\frac{a}{{\sin A}} = 2R\) , \( \Rightarrow \frac{{4\sqrt 2 }}{{4/5}} = 2R\) \( \Rightarrow R = \frac{{5\sqrt 2 }}{2}\)
|