PART 14:餘弦定律(02:38)

設 \(\vartriangle ABC\) 中, \(\angle A\) 之對邊為 \(a\) , \(\angle B\) 之對邊為 \(b\) , \(\angle C\) 之對邊為 \(c\),則
\({a^2} = {b^2} + {c^2} - 2bc\cos A\)
\({b^2} = {a^2} + {c^2} - 2ac\cos B\)
\({c^2} = {a^2} + {b^2} - 2ab\cos C\)

圖19. 餘弦定律