PART 14:餘弦定律(02:38)
設 \(\vartriangle ABC\) 中, \(\angle A\) 之對邊為 \(a\) , \(\angle B\) 之對邊為 \(b\) , \(\angle C\) 之對邊為 \(c\),則 \({a^2} = {b^2} + {c^2} - 2bc\cos A\) \({b^2} = {a^2} + {c^2} - 2ac\cos B\) \({c^2} = {a^2} + {b^2} - 2ab\cos C\)
圖19. 餘弦定律