 
PART 4:負角互補性質 (04:55)
圖4的推廣到圖6,可以得到下列基本性質
負角關係
\(\cos ( - \theta ) = \cos \theta \) , \(\sin ( - \theta ) = - \sin \theta \)
互補關係
\(\cos ({180^ \circ } - \theta ) = - \cos \theta \) , \(\sin ({180^ \circ } - \theta ) = \sin \theta \)
例題1 求 \(\sin \left( { - {{120}^ \circ }} \right) = ?\)
因為 \(\sin x\) 為奇函數,角度為負號可以移至外面, \(\sin \left( { - {{120}^ \circ }} \right) = - \sin \left( {{{120}^ \circ }} \right) = - \frac{{\sqrt 3 }}{2}\)
例題2 求 \(\cos \left( { - {{120}^ \circ }} \right) = ?\)
因為 \(\cos x\) 為偶函數,角度為負號可以直接去掉, \(\cos \left( { - {{120}^ \circ }} \right) = \cos \left( {{{120}^ \circ }} \right) = - \cos \left( {{{60}^ \circ }} \right) = - \frac{1}{2}\)
|