|
PART 5:例題-約化公式 \(n = 2,\) \(\int {{{\sin }^2}x\;dx} = - \frac{1}{2}\cos x\sin x + \frac{1}{2}\int {dx} \) \( = - \frac{1}{2}\cos x\sin x + \frac{x}{2} + C\) \(n = 3,\) \(\int {{{\sin }^3}x\;dx} = - \frac{1}{3}\cos x{\sin ^2}x + \frac{2}{3}\int {\sin xdx} \) \( = - \frac{1}{3}\cos x{\sin ^2}x - \frac{2}{3}\cos x + C\) \(n = 5,\) \(\int {{{\sin }^5}x\;dx} = - \frac{1}{5}\cos x{\sin ^4}x + \frac{4}{5}\int {{{\sin }^3}xdx} \) , 再將 \(\int {{{\sin }^3}x\;dx} \) 的結果代入 |