 
PART 12:正弦定律(03:49)
設 \(\vartriangle ABC\) 之外接圓半徑為 \(R\) ,
\(\angle A\) 之對邊為 \(a\) ,
\(\angle B\) 之對邊為 \(b\) ,
\(\angle C\) 之對邊為 \(c\) ,
則\(\frac{a}{{\sin A}} = \frac{b}{{\sin B}} = \frac{c}{{\sin C}} = 2R\)
\(\Delta = \frac{1}{2}ab\sin C = \frac{1}{2}bc\sin A = \frac{1}{2}ac\sin B\) ,全部同乘2
\(2\Delta = ab\sin C = bc\sin A = ac\sin B\) ,全部同除 \(abc\)
\(\frac{{2\Delta }}{{abc}} = \frac{{\sin C}}{c} = \frac{{\sin A}}{a} = \frac{{\sin B}}{b}\) ,又過 \(C\) 穿過圓心交弧於 \(A'\),
連接 \(\overline {A'B} \) ,則 \(\angle A = \angle A'\) (等弧對等角), \(\angle A'BC = {90^ \circ }\) (半圓含直角)
\(\because \sin {A}'=\sin A=\frac{a}{2R}\)可以得到 \(R = \frac{{abc}}{{4\Delta }}\) |