PART 5:例題-函數不連續的判斷(08:08) 下列函數在何處不連續? 1. \(f\left( x \right) = \frac{{{x^2} - 1}}{{x + 1}}\) 2. \(f\left( x \right) = \frac{{x + 7}}{{{x^2} - 2x - 3}}\) 3. \(f\left( x \right) = \frac{x}{{\left| x \right| - 3}}\) 4. \(f\left( x \right) = \frac{{x + 3}}{{\left| {{x^2} + 3x} \right|}}\) 5. \(f\left( x \right) = \) \(\left\{ {\begin{array}{*{20}{c}}{\frac{{{x^2} - 1}}{{x + 1}}}&{}\\6&{}\end{array}} \right.\) \(\begin{align} 2. \(f\left( x \right) = \frac{{x + 7}}{{{x^2} - 2x - 3}} = \frac{{x + 7}}{{(x - 3)(x + 1)}}\) \( \Rightarrow \;\) \(x = - 1\) , \(x = 3\) 3. \(f\left( x \right) = \frac{x}{{\left| x \right| - 3}}\) \( \Rightarrow \left| x \right| - 3 = 0\) , \(x = - 3\;\;\) , \(x = 3\) 4. \(f\left( x \right) = \frac{{x + 3}}{{\left| {{x^2} + 3x} \right|}} = \frac{{x + 3}}{{\left| x \right|\left| {x + 3} \right|}}\) \( \Rightarrow x = 0\) , \(x = - 3\;\) 5. \(f\left( x \right) = \) \(\left\{ {\begin{array}{*{20}{c}}{\frac{{{x^2} - 1}}{{x + 1}}}&{}\\6&{}\end{array}} \right.\) \(\begin{align} |